Số Phức Liên Hợp Là Gì? Các Tính Chất Và Cách Tìm Số Phức Liên Hợp

Số phức là một trong những chuyên đề quan trọng trong Đại số lớp 12 và thường xuất hiện trong các đề thi đại học. Vậy số phức là gì? Số phức liên hợp gì? Làm thế nào để tìm thấy số phức liên hợp thế nào? Trong bài viết này, hkmobile.vn sẽ giúp các em củng cố các lý thuyết liên quan bao gồm khái niệm, tính chất và hướng dẫn giải một số bài tập cơ bản.

>>> Xem thêm:

Số phức là gì? Cách tìm biểu diễn của số phức

Các dạng bài tập và Bất đẳng thức Toán lớp 10

Số phức là gì?

Số phức là gì? (Nguồn: Internet)

Phương trình bậc hai như x2 + 1 = 0 không có nghiệm thực, vì x2 không thể bằng -1. Với mong muốn mở rộng tập các số thực để mọi phương trình bậc n đều có nghiệm, khái niệm số phức đã được đưa ra. Đơn vị ảo của một số phức có ký hiệu là i và là nghiệm của phương trình i2 = -1.

Vì vậy, một số phức (tên tiếng Anh là complex number) là một số có dạng z = a + bi. trong đó a và b là các số thực và i là một đơn vị ảo với i2 = -1. Đồng thời, a được gọi là phần thực, b là phần ảo và i là đơn vị ảo.

Tập hợp các số phức được kí hiệu là C.

Ví dụ:

Số phức 6 + 8i có phần thực là 6 và phần ảo là 8.

Số phức 5 – 9i có phần thực là 5 và phần ảo là -9.

Số phức -7 – i có phần thực là -7 và phần ảo là -1.

Số phức có thể được biểu diễn trên mặt phẳng phức. Trục hoành là trục số thực và trục tung là trục số ảo. Do đó, một số phức được xác định bởi một điểm có tọa độ (a, b). Số phức không có phần thực được gọi là số thuần ảo. Nếu số phức đó có phần ảo bằng 0 thì nó trở thành số thực R. Việc mở rộng trường số phức giúp chúng ta giải các bài toán không giải được trong trường số thực.

Xem thêm bài viết hay:  Tết ăn gì cho may mắn? Gợi ý các món ăn đầu năm mới không lo tăng cân, cũng không sợ ngán

7 cách học tốt môn toán đơn giản mà hiệu quả mà ai cũng có thể áp dụng

>>> Xem thêm: Tổng hợp đầy đủ và chi tiết các ký hiệu toán học thường gặp

chương trình thử nghiệm

Số phức liên hợp là gì?

Số phức liên hợp là gì?

Số phức liên hợp là gì? (Nguồn: Internet)

Theo định nghĩa về số phức ở trên, số phức có dạng a + bi với i2 = -1.

\begin{aligned}
&\textbf{Số phức liên hợp }\text{chính là a – bi và được ký hiệu là } \overline{z}, \text{ với }\overline{z} = a - bi.\\
&\text{Ví dụ: ta có: z = 2 + 3i, vậy số phức liên hợp của z là } \overline{z}= 2 – 3i.

\end{aligned}

Tính chất của số phức liên hợp

Số phức liên hợp có các thuộc tính sau:

|z| = |\overline{z}|; ∀z∈\Complex
\small \text{Do đó, 2 điểm biểu diễn của z và } \overline{z} \text{ sẽ đối xứng với nhau qua trục Oxy trên mặt phẳng tọa độ Oxy.}
\overline{z+z'}=\overline{z}+\overline{z'}

Theo công thức này, liên hợp của một tổng sẽ bằng tổng của số phức liên hợp. Công thức trên cũng đúng với phép trừ, phép nhân và phép chia.

z . \overline{z} = a^2 + b^2

Đây là một công thức quan trọng và thường được áp dụng trong nhiều bài toán.

\begin{aligned}
&\text{Với z là số thực, thì ta có trong mọi trường hợp } z = \overline{z}\\
&\text{Với z là số ảo tức là phần thực của nó = 0 thì }z = –\overline{z}
\end{aligned}

Cách tìm số phức liên hợp

\text{Cho số phức z = a + bi. Ta gọi }\textbf{số phức liên hợp }\text{của số phức z = a + bi là }\overline{z} = a - bi.

Kết quả: z ∈ C ta có:

\begin{aligned}
&\bull |z| = |\overline{z}|\\
&\bull \overline{z_1\pm z_2}=\overline{z_1}\pm\overline{z_2}\\
&\bull \overline{z_1.z_2}=\overline{z_1}.\overline{z_2}\\
&\bull \overline{\left(\frac{z_1}{z_2}\right)}=\frac{\overline{z_1}}{\overline{z_2}}\\
&\bull \text{z là số thực khi }z = \overline{z}\\
&\bull \text{z là số thuần ảo khi }z = - \overline{z}
\end{aligned}

Bài tập áp dụng về số phức liên hợp

Để giúp các em nắm vững hơn kiến ​​thức về số phức liên hợp, Team hkmobile.vn đã biên soạn một số bài tập vận dụng và hướng dẫn chi tiết cách giải:

Bí Quyết Học Tốt Toán 12 Và Đạt Điểm Cao Khi Thi Đại Học

Xem thêm bài viết hay:  Phương trình lượng giác cơ bản và các dạng bài tập có lời giải

Bài tập 1:

\text{Cho số phức }z = 1 + 3i .\text{ Tìm số phức }\overline{z}.

Dung dịch:

z = 1 + 3i \Rightarrow \overline{z} = 1 - 3i

Bài tập 2:

Tìm liên hợp của các số phức sau:

một. z = -3 + 5i

b. z = 3 – 4i

c. z = 5 – 3i

d. z = i (3i +1)

Dung dịch:

\begin{aligned}
&\text{a. Số phức liên hợp của z = -3 + 5i là } \overline{z}=-3-5i\\
&\text{b. Số phức liên hợp của z = 3 - 4i là } \overline{z}=3+4i\\
&\text{c. Số phức liên hợp của z = 5 - 3i là } \overline{z}=5+3i\\
&\text{d. Ta có về dạng cơ bản: z = i(3i + 1) = -3 + i}\\
&\text{Vậy số phức liên hợp của z = -3 + i là } \overline{z}=-3-i\\
\end{aligned}

Bài tập 3

\text{Tìm số phức liên hợp của số phức }z=\frac{1+i}{2-i}.

Dung dịch:

\begin{aligned}
&\frac{1+i}{2-i}=\frac{(1+i)(2+i)}{(2-i)(2+i)}=\frac{1+3i}{2^2-i^2}=\frac15+\frac35i\\
&\Rightarrow \overline{z}=\frac15-\frac35i
\end{aligned}

Bài tập 4:

\text{Tìm số phức z thỏa mãn }z - (2 + 3i)\overline{z} = 1 - 9i .

Dung dịch:

\begin{aligned}
&\text{Gọi }z = a + bi => \overline{z}=a-bi\\
&z - (2 + 3i)\overline{z} = 1 - 9i\\
&\Leftrightarrow (a+bi)-(2+3i)(a-bi)=1-9i\\
&\Leftrightarrow a + bi -2a+2bi-3ai+3b.i^2=1-9i\\
&\Leftrightarrow a+ bi - 2a + 2bi - 3ai - 3b = 1 - 9i\\
&\Leftrightarrow -a-3b+(b+2b-3a)i=1-9i\\
&\Leftrightarrow \begin{cases} -a-3b=1\\-3a+3b=-9\end{cases}\\
&\Leftrightarrow \begin{cases} a=2 \\b=-1\end{cases}\\
&\text{Vậy }z = 2 - i
\end{aligned}

Học trực tuyến livestream Toán – Lý – Hóa – Văn – Anh – Sinh để bứt phá điểm số 2022 – 2023 tại hkmobile.vn

Giáo dục hkmobile.vnNền tảng học Toán – Lý – Hóa – Văn – Anh – Sinh trực tuyến uy tín và chất lượng nhất Việt Nam Dành cho học sinh từ lớp 8 đến lớp 12. Với nội dung chương trình học bám sát khung chương trình của Bộ Giáo dục và Đào tạo, hkmobile.vn sẽ giúp các em lấy lại hành trang, bứt phá về điểm số và nâng cao thành tích của mình. nghiên cứu.

Tại hkmobile.vn, trẻ em sẽ được giảng dạy bởi các giáo viên từ TOP 1% giáo viên giỏi toàn quốc. Các giáo viên đều có trình độ Thạc sĩ trở lên với hơn 10 năm kinh nghiệm giảng dạy và có nhiều thành tích xuất sắc trong sự nghiệp giáo dục. Với phương pháp giảng dạy sáng tạo, dễ tiếp cận, giáo viên sẽ giúp học sinh tiếp thu kiến ​​thức một cách nhanh chóng và dễ dàng.

Giáo dục hkmobile.vn cũng có sẵn Đội ngũ cố vấn học tập chuyên nghiệp luôn theo sát quá trình học tập của các em, hỗ trợ các em giải đáp mọi thắc mắc trong quá trình học và cá nhân hóa lộ trình học tập của các em.

Xem thêm bài viết hay:  Tóm tắt Gặp Ka-ríp và Xi-la, ngắn gọn

Cực trị của hàm số lớp 12: Lý thuyết, kết quả và bài tập

Với ứng dụng tích hợp nền tảng công nghệ và thông tin dữ liệu, mỗi lớp học của hkmobile.vn luôn được đảm bảo Đường truyền ổn định, hạn chế giật / lag tối đa với chất lượng hình ảnh và âm thanh tốt nhất.

Nhờ nền tảng học tập livestream trực tuyến mô phỏng lớp học offline, học viên có thể tương tác trực tiếp với giáo viên dễ dàng như khi học tại trường.

Khi trở thành học viên của hkmobile.vn, bạn cũng sẽ nhận được Cẩm nang Toán – Lý – Hóa “siêu hay” Tổng hợp tất cả các công thức và nội dung khóa học được biên soạn cẩn thận, chi tiết và kỹ lưỡng giúp học sinh học tập và ghi nhớ kiến ​​thức dễ dàng hơn.

hkmobile.vn cam kết tăng 8+ hoặc ít nhất 3 điểm cho học sinh. Nếu bạn không đạt số điểm như cam kết, hkmobile.vn sẽ hoàn trả 100% học phí cho bạn. Hãy nhanh tay đăng ký livestream trực tuyến Toán – Lý – Hóa – Văn lớp 8 – 12 năm học 2022 – 2023 tại hkmobile.vn ngay hôm nay để hưởng mức học phí siêu ưu đãi lên đến 39%, giảm từ 699K chỉ còn 399K.

Với những kiến ​​thức được chia sẻ trong bài viết, Team hkmobile.vn hi vọng sẽ giúp các em nắm vững kiến ​​thức về số phức, số phức liên hợp bao gồm các khái niệm, tính chất, cách tìm và các ví dụ minh họa để giải tốt các bài toán trong kỳ thi sắp tới. Chúc các bạn thành công!

Nhớ để nguồn: Số Phức Liên Hợp Là Gì? Các Tính Chất Và Cách Tìm Số Phức Liên Hợp

Viết một bình luận